SEVERI VARIETIES AND SELF-RATIONAL MAPS OF K3 SURFACES

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Severi varieties and self rational maps of K3 surfaces

0.1 Notations. We deal in this paper with complex projective K3 surfaces, i.e. smooth K-trivial complex projective surfaces without irregularity. Let φ : S 99K S be a dominant self rational map. Suppose Pic(S) = Z. Then there exists a positive integer l such that φOS(1) ∼= OS(l). It is the algebraic degree of φ, that is the degree of the polynomials defining φ. There always exists an eliminatio...

متن کامل

Self Rational Maps of K3 Surfaces

We prove that a very general projective K3 surface does not admit a dominant self rational map of degree at least two.

متن کامل

K3 Surfaces, Rational Curves, and Rational Points

We prove that for any of a wide class of elliptic surfaces X defined over a number field k, if there is an algebraic point on X that lies on only finitely many rational curves, then there is an algebraic point on X that lies on no rational curves. In particular, our theorem applies to a large class of elliptic K3 surfaces, which relates to a question posed by Bogomolov in 1981. Mathematics Subj...

متن کامل

K3 Surfaces, Rational Curves, and Rational Points

We prove that for any of a wide class of elliptic surfaces X defined over a number field k, if there is an algebraic point on X that lies on only finitely many rational curves, then there is an algebraic point on X that lies on no rational curves. In particular, our theorem applies to a large class of elliptic K3 surfaces, which relates to a question posed by Bogomolov in 1981. Mathematics Subj...

متن کامل

On Severi varieties on Hirzebruch surfaces

In the current paper we prove that any Severi variety on a Hirzebruch surface contains a unique component parameterizing irreducible nodal curves of the given genus in characteristic zero.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics

سال: 2009

ISSN: 0129-167X,1793-6519

DOI: 10.1142/s0129167x09005844